Urban aglomeratsiyalar sharoitida yer osti inshootlariga ta’sir etuvchi geologik xavflarni kompleks baholash
DOI:
https://doi.org/10.5281/zenodo.15423908Ключевые слова:
Urban aglomeratsiyalar, Geologik xavf, Yer osti inshootlari, GIS-AHP, SBAS-InSAR, Geotexnik modellashtirish, HVE modeli, Fazoviy tahlil, Grunt deformatsiyasi, Shaharsozlik xavfsizligi.Аннотация
Ushbu maqolada urban aglomeratsiyalardagi yer osti inshootlariga ta’sir etuvchi
geologik xavflarni baholash bo‘yicha kompleks yondashuv taklif etilgan. O‘zbekiston sharoitida jadal
urbanizatsiya, yangi metro liniyalari, kommunikatsiya va transport infratuzilmalari qurilishi fonida
tabiiy-geologik xavflarni chuqur ilmiy baholash dolzarb masalaga aylangan. Tadqiqotda “Hazard–
Vulnerability–Exposure” modeli asosida GIS-AHP fazoviy tahlili, SBAS-InSAR sun’iy yo‘ldosh
monitoringi va FEM (Finite Element Method) geotexnik modellashtirish usullari uyg‘unlashtirilgan.
Natijada, urban hududlar geologik xavf darajasiga ko‘ra to‘rt sinfga ajratilgan, har bir zona uchun
tavsiyalar ishlab chiqilgan. Ushbu ilmiy asoslangan yondashuv urban infratuzilmaning barqaror va
xavfsiz rivojlanishiga xizmat qiladi
Библиографические ссылки
Ngoma, S., Radonjic, M., Kalyoncu, A., & Alshibli, K. (2025). Geological risks of underground
infrastructures in urban heat islands. Environmental Research, 232, 117072. https://doi.
org/10.1016/j.envres.2024.117072
Axéen, S. (2023). Assessment of subsurface deformations and risk under urban construction
(Master’s thesis). Lund University. https://lup.lub.lu.se/student-papers/search/publication/9147883
Krewski, D., et al. (2022). Decision-making principles for environmental health risk. Journal of
Toxicology and Environmental Health, Part B, 25(3), 101–124. https://doi.org/10.1080/10937404
.2022.2038247
Barla, G., & Barla, M. (2016). TBM tunnelling in difficult ground conditions. Tunnelling and
Underground Space Technology, 57, 177–190. https://doi.org/10.1016/j.tust.2016.03.021
Nygren, J., et al. (2020). Urban groundwater dynamics and seasonal stress interactions. Journal
of Hydrology, 588, 125079. https://doi.org/10.1016/j.jhydrol.2020.125079
Lin, H., Wang, Y., & Zhou, Y. (2021). Three-dimensional risk zoning in coastal deltas using the HVE
model. Journal of Cleaner Production, 280, 124276. https://doi.org/10.1016/j.jclepro.2020.124276
Swain, K. C., Sahoo, S., & Mahapatra, A. (2020). Flood susceptibility mapping through the GISAHP
technique. Spatial Information Research, 28(5), 627–640. https://doi.org/10.1007/s41324-
-00318-2
Kim, D., & Park, H. (2021). Subsurface stress constraints in deep rock environments. Underground
Space, 6(4), 293–308. https://doi.org/10.1016/j.undsp.2020.08.003
Herrero, C., & Mateo, M. (2023). The contribution of urban geology to the development of
sustainable cities. Science of The Total Environment, 879, 162908. https://doi.org/10.1016/j.
scitotenv.2023.162908
Liu, L., Zhang, Y., Chen, Y., et al. (2021). Urban subsidence monitoring by SBAS-InSAR technique
in the Beijing Plain. Remote Sensing, 13(12), 2342. https://doi.org/10.3390/rs13122342
Zhang, Q., Zhao, Y., & Li, Y. (2025). Urban resilience for urban sustainability: Concepts and
evaluation. Sustainable Cities and Society, 85, 104179. https://doi.org/10.1016/j.scs.2023.104179
Kazo, J. (2021). Risk assessment of long-distance water infrastructure. Journal of Infrastructure
Systems, 27(3), 05021003. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000625
Zhang, Y., Liu, Q., Wang, X., & Chen, H. (2025). Deep learning-based risk modeling for urban
geological stability: A case study of Xuzhou. Computers, Environment and Urban Systems, 95,
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 MUHANDISLIK VA IQTISODIYOT

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.