METALLURGIK TEXNOGEN CHIQINDILARDAN KAMYOB METALLARNI AJRATIB OLISH TEXNOLOGIYASI
DOI:
https://doi.org/10.5281/zenodo.18392280Keywords:
volfram tarkibli texnogen chiqindilar, sheelit, flotatsiya, magnit ajratish, WO3 ajralish, elektrokimyoviy erishAbstract
Mazkur maqolada volfram tarkibli metallurgik texnogen chiqindilarni ikkilamchi xomashyo sifatida qayta
ishlash orqali volfram minerallarini samarali ajratib olish texnologiyasi tadqiq etilgan. Boshlang‘ich xomashyoning mineral
va fazaviy tarkibi rentgen-fazaviy tahlil yordamida aniqlanib, foydali va gang minerallarning miqdoriy nisbatlari baholandi.
WC–Co psevdoqotishmalarining turli kislotali muhitlardagi elektrokimyoviy xatti-harakati o‘rganilib, kobaltning selektiv
erishi uchun maqbul sharoitlar belgilandi. Boyitish jarayonlarida magnit ajratish va flotatsiya usullari ketma-ket qo‘llanilib,
zarracha o‘lchami, magnit maydon kuchlanishi hamda flotatsiya reagentlari tarkibining WO3 ajralish darajasiga ta’siri tahlil
qilindi. Tajriba natijalari magnit ajratish yirik fraksiyalar uchun samarali ekanligini, mayda va ultramayda zarrachalarda
esa flotatsiya jarayoni ustunlikka ega ekanligini ko‘rsatdi. Oldindan desliming va mos reagentlar kombinatsiyasini tanlash
sheelitning selektiv ajralishini oshirib, yuqori sifatli konsentrat olish imkonini berdi. Olingan natijalar volfram tarkibli
texnogen chiqindilarni kompleks qayta ishlash va resurslardan oqilona foydalanish uchun ilmiy-amaliy asos yaratadi
References
West, J. (2020). Extractable global resources and the future availability of metal stocks: “Known Unknowns” for the
foreseeable future. Resources Policy, 65, 101574.
Shodiev, A., Boymurodov, N., & Ravshanov, A. (2023). Study of the technology for extracting tungsten in the form
of a semi-finished product and metallic form from industrial waste. Sanoatda raqamli texnologiyalar/Цифровые
технологии в промышленности, 1(2), 87-91.
Oskolkova, T. N., & Glezer, A. M. (2017). Surface hardening of hard tungsten-carbide alloys: a review. Steel in
Translation, 47(12), 788-796.
Katiyar, P. K., Lavakumar, A., Maurya, R., & Singh, P. K. (2023). High entropy alloys (HEAs) as a binder material
for heavy tungsten alloys, tungsten carbide hardmetals, and titanium carbo-nitride based cermet composites-a
comprehensive review. Advances in Materials and Processing Technologies, 9(4), 1979-2016.
Galetz, M. C., Rammer, B., & Schütze, M. (2015). Refractory metals and nickel in high temperature chlorinecontaining
environments-thermodynamic prediction of volatile corrosion products and surface reaction mechanisms: a
review. Materials and corrosion, 66(11), 1206-1214.
Clarke, S. I., & Mazzafro, W. J. (2000). Nitric acid. Kirk-Othmer Encyclopedia of Chemical Technology.
Tulskiy, G., Lyashok, L., Gomozov, V., Vasilchenko, A., & Skatkov, L. (2022). Electrochemical Processing of Tungsten-
Cobalt Pseudoalloys, Receiving Tungsten Powder for Modification of Aramid Tissue. Solid State Phenomena, 334,
-12.
Xinyu, E., Gong, M., Su, Q., Ding, S., Wang, J., Mu, Y., ... & Cui, X. (2025). Anion regulated the phase composition of
tungsten carbide for efficient alkaline hydrogen evolution. Journal of Colloid and Interface Science, 138840.
Botirovich, X. J. N., Mamarasulovich, R. Z. U. B., & Odilo‘G‘Li, I. B. (2025). “NKMK” AJ “AUMINZO-AMANTOY” KONI
OLTIN AJRATISH SEXI TEXNOGEN CHIQINDILARINI TADQIQ QILISH. Sanoatda raqamli texnologiyalar/Цифровые
технологии в промышленности, 3(4), 124-128.
Khojakulov, A., Ruziyev, U., Boymurodov, N., Shernazarov, I., Mashaev, E., & Shoyimova, K. (2024). Research
and determination of parameters for extracting valuable components from technological waste. In BIO Web of
Conferences (Vol. 149, p. 01049). EDP Sciences.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 MUHANDISLIK VA IQTISODIYOT

This work is licensed under a Creative Commons Attribution 4.0 International License.