DAVLAT BUDJETI DAROMADLARINI O‘RTA MUDDATLI ISTIQBOLDA REJALASHTIRISH VA PROGNOZLASHTIRISH O‘ZIGA XOS XUSUSIYATLARI

DAVLAT BUDJETI DAROMADLARINI O‘RTA MUDDATLI ISTIQBOLDA REJALASHTIRISH VA PROGNOZLASHTIRISH O‘ZIGA XOS XUSUSIYATLARI

Авторы

  • Umidjon Pardaev

DOI:

https://doi.org/10.5281/zenodo.17951082

Ключевые слова:

davlat budjeti daromadlari, o‘rta muddatli fiskal prognozlash, Ridge regressiyasi, Lasso regressiyasi, Elastic Net, YAIM, mulk solig‘i, daromad solig‘i, MTEF, fiskal barqarorlik

Аннотация

Ushbu maqolada O‘zbekiston Respublikasida davlat budjeti daromadlarini o‘rta muddatli istiqbolda
rejalashtirish va prognozlashtirishning ilmiy-metodologik asoslari ishlab chiqilgan. Tadqiqot 2000–2023-yillar davri uchun
YAIM, uning tarkibiy tarmoqlari (qishloq xo‘jaligi, sanoat, qurilish, savdo va xizmat ko‘rsatish) va konsolidatsiyalashgan
budjetdagi asosiy soliq turlari (QQS, aksiz solig‘i, mulk solig‘i, daromad solig‘i) bo‘yicha real qiymatlardagi ma’lumotlarga
tayanadi. An’anaviy OLS modeli natijalari Ridge, Lasso va Elastic Net kabi regulyarizatsiyalang‘an regressiya modellari
bilan taqqoslanib, o‘rta muddatli fiskal prognozlarning aniqligi va barqarorligini oshirish imkoniyatlari baholangan.
Empirik natijalar mulk va daromad soliqlari YAIM hamda tarmoqlararo o‘sishning eng kuchli drayverlari ekanini, mulk
solig‘i koeffitsiyentlari esa ayniqsa sanoat va qurilish tarmoqlarida yuqori ekanini ko‘rsatadi. 2024–2026-yillar uchun
makroiqtisodiy ko‘rsatkichlar va konsolidatsiyalashgan budjet daromadlari bo‘yicha ishlab chiqilgan prognozlar Ridge/
Lasso modellari natijalari bilan uyg‘unlikda bo‘lib, resurslar «chegarasi»ni (resource envelope) aniq belgilash va MTEF
doirasida fiskal barqarorlikni mustahkamlashga xizmat qiladi. Maqolada yuridik shaxslar ko‘chmas mulki uchun eng kam
kadastr me’yorlarini joriy etish, soliq ma’murchiligini raqamlashtirish va hududlar kesimida soliq bazasini diversifikatsiya
qilishga doir amaliy takliflar ilgari surilgan

Биография автора

Umidjon Pardaev

O‘zbekiston Resublikasi Prezidenti huzuridagi
Davlat siyosati va boshqaruvi akademiyasi
“Gumanitar va ijtimoiy fanlar” maktabi professori,
iqtisodiyot fanlari doktori (DSc)

Библиографические ссылки

O‘zbekiston Respublikasining 2023-yil 25-dekabrdagi “2024-yil uchun O‘zbekiston Respublikasining davlat budjeti

to‘g‘risida” O‘RQ-886-sonli Qonuni

Auerbach, A. J. (1994). The U.S. fiscal problem: Where we are, how we got here, and where we’re going. NBER

Working Paper No. 4709. https://www.nber.org/papers/w4709

De Renzio, P. (2009). Taking stock: What do PEFA assessments tell us about PFM systems across countries? ODI

Working Paper. https://odi.org/en/publications/taking-stock-what-do-pefa-assessments-tell-us-about-pfm-systemsacross-

countries/

Leal, T., Pérez, J. J., Tujula, M., & Vidal, J. P. (2008). Fiscal forecasting: Lessons from the literature and challenges.

OECD Journal on Budgeting, 8(1), 1–29.

Jonung, L., & Larch, M. (2006). Improving fiscal policy in the EU: The case for independent forecasts. Economic

Policy, 21(47), 491–534.

World Bank. (1998). Public Expenditure Management Handbook. Washington, DC: World Bank.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics,

(1), 55–67.

Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society:

Series B (Methodological), 58(1), 267–288.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 67(2), 301–320.

Hill, R. C., Griffiths, W. E., & Lim, G. C. (2024). Explaining Ridge Regression and LASSO. In Principles of Econometrics

(Chapter 4). University of Arizona.

Li, Y., & Li, X. (2021). Lasso and ridge regression methods and their application in GDP forecasting. Proceedings of

SPIE, 12163, 1216337. https://doi.org/10.1117/12.2628045

Belloni, A., Chernozhukov, V., & Hansen, C. (2017). Lasso regressions and forecasting models in applied stress

testing. IMF Working Paper WP/17/108.

GeeksforGeeks. (2024). Ridge regression vs. Lasso regression. https://www.geeksforgeeks.org/machine-learning/

ridge-regression-vs-lasso-regression/

Department of Treasury and Finance Victoria. (n.d.). An overview of forecasting algorithms (including Lasso and Ridge

in tax revenue forecasting). https://www.dtf.vic.gov.au/victorias-economic-bulletin-applying-machine-learning-taxrevenue-

forecasting/3-overview-forecasting-algorithms

Mondal, S. (2024). A tutorial on Ridge and Lasso regression. LinkedIn. https://www.linkedin.com/pulse/tutorial-ridgelasso-

regression-subhajit-mondal

Scitepress. (2025). Using Linear Regression, Ridge Regression, Lasso Regression and Elastic Net in Predicting

Economic Indicators. In Proceedings of the 13th International Conference on Data Science, Technology and

Applications.

Загрузки

Опубликован

2025-10-01
Loading...