SUN’IY INTELLEKT ASOSIDA MOLIYAVIY STRESS-TEST TIZIMINI YARATISH METODOLOGIYASI
DOI:
https://doi.org/10.5281/zenodo.17657694Keywords:
Sun’iy intellekt, moliyaviy barqarorlik, stress-test, prognozlash, iqtisodiy xavfsizlik, LSTM, XGBoostAbstract
Ushbu maqolada moliyaviy barqarorlikni baholashning zamonaviy vositasi sifatida sun’iy intellekt asosida
stress-test tizimini yaratish metodologiyasi ishlab chiqilgan. Tadqiqotda iqtisodiy o‘zgaruvchanlik sharoitida bank sektori
va investitsion faoliyat barqarorligini baholash uchun LSTM va XGBoost modellarining kombinatsiyasi taklif etiladi.
Natijalar shuni ko‘rsatadiki, sun’iy intellektga asoslangan yondashuvlar moliyaviy tizimdagi zaif nuqtalarni erta aniqlash,
risklarni prognozlash va iqtisodiy siyosat samaradorligini oshirish imkonini beradi. Taklif etilgan metodologiya O‘zbekiston
iqtisodiy tizimida raqamli moliyaviy nazoratni takomillashtirishda amaliy ahamiyat kasb etadi
References
Zaynutdinov, I. S. (2025). Korxonalarning bankrotlik ehtimolini sun’iy intellekt yordamida prognozlash. Yashil Iqtisodiyot
va Taraqqiyot, 3(11), 11–16.
Zaynutdinov, I. S. (2025). Sun’iy intellekt yordamida investitsion xavflarni baholash metodologiyasi. XXI asr: fan va
taʼlim masalalari ilmiy elektron jurnali, №3, ISSN 2181-9874.
Kongratbay Sharipov. (2025). Amalga oshirishning ustuvor yo‘nalishlari – oliy ta’lim transformatsiyasi, raqamli
modernizatsiya va barqaror rivojlanish omillari. Yashil Iqtisodiyot va Taraqqiyot, 3(1), 14–16.
Axmedjanov, K. (2020). Ахмеджанов Каримжон. Rискlarni korporativ boshqarishda ichki audit. Архив научных
исследований, 1(4).
Eshov, M. (2020). Influence assessment of enterprise management value based on coefficients methods under the
risk conditions. Advances in Mathematics: Scientific Journal, 9(9), 7573–7598.
OECD. (2024). Artificial Intelligence in Financial Risk Assessment. Paris: OECD Publishing.
World Bank. (2023). Digital Finance and Economic Resilience in Central Asia. Washington, DC: World Bank Group.
IMF. (2023). Artificial Intelligence and the Future of Macroeconomic Policy. Washington, DC: International Monetary
Fund.
Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal
of Finance, 23(4), 589–609.
Zhang, L., & Li, W. (2022). Machine Learning Models for Financial Distress Prediction in Emerging Economies. Journal
of Sustainable Finance & Investment, 12(4), 455–471.
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 785–794.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 MUHANDISLIK VA IQTISODIYOT

This work is licensed under a Creative Commons Attribution 4.0 International License.