Urban aglomeratsiyalar sharoitida yer osti inshootlariga ta’sir etuvchi geologik xavflarni kompleks baholash

Urban aglomeratsiyalar sharoitida yer osti inshootlariga ta’sir etuvchi geologik xavflarni kompleks baholash

Authors

  • Shavkatbek Irgashev

DOI:

https://doi.org/10.5281/zenodo.15423908

Keywords:

Urban aglomeratsiyalar, Geologik xavf, Yer osti inshootlari, GIS-AHP, SBAS-InSAR, Geotexnik modellashtirish, HVE modeli, Fazoviy tahlil, Grunt deformatsiyasi, Shaharsozlik xavfsizligi.

Abstract

Ushbu maqolada urban aglomeratsiyalardagi yer osti inshootlariga ta’sir etuvchi
geologik xavflarni baholash bo‘yicha kompleks yondashuv taklif etilgan. O‘zbekiston sharoitida jadal
urbanizatsiya, yangi metro liniyalari, kommunikatsiya va transport infratuzilmalari qurilishi fonida
tabiiy-geologik xavflarni chuqur ilmiy baholash dolzarb masalaga aylangan. Tadqiqotda “Hazard–
Vulnerability–Exposure” modeli asosida GIS-AHP fazoviy tahlili, SBAS-InSAR sun’iy yo‘ldosh
monitoringi va FEM (Finite Element Method) geotexnik modellashtirish usullari uyg‘unlashtirilgan.
Natijada, urban hududlar geologik xavf darajasiga ko‘ra to‘rt sinfga ajratilgan, har bir zona uchun
tavsiyalar ishlab chiqilgan. Ushbu ilmiy asoslangan yondashuv urban infratuzilmaning barqaror va
xavfsiz rivojlanishiga xizmat qiladi

Author Biography

Shavkatbek Irgashev


Toshkent shahar hokimining maslahatchisi

References

Ngoma, S., Radonjic, M., Kalyoncu, A., & Alshibli, K. (2025). Geological risks of underground

infrastructures in urban heat islands. Environmental Research, 232, 117072. https://doi.

org/10.1016/j.envres.2024.117072

Axéen, S. (2023). Assessment of subsurface deformations and risk under urban construction

(Master’s thesis). Lund University. https://lup.lub.lu.se/student-papers/search/publication/9147883

Krewski, D., et al. (2022). Decision-making principles for environmental health risk. Journal of

Toxicology and Environmental Health, Part B, 25(3), 101–124. https://doi.org/10.1080/10937404

.2022.2038247

Barla, G., & Barla, M. (2016). TBM tunnelling in difficult ground conditions. Tunnelling and

Underground Space Technology, 57, 177–190. https://doi.org/10.1016/j.tust.2016.03.021

Nygren, J., et al. (2020). Urban groundwater dynamics and seasonal stress interactions. Journal

of Hydrology, 588, 125079. https://doi.org/10.1016/j.jhydrol.2020.125079

Lin, H., Wang, Y., & Zhou, Y. (2021). Three-dimensional risk zoning in coastal deltas using the HVE

model. Journal of Cleaner Production, 280, 124276. https://doi.org/10.1016/j.jclepro.2020.124276

Swain, K. C., Sahoo, S., & Mahapatra, A. (2020). Flood susceptibility mapping through the GISAHP

technique. Spatial Information Research, 28(5), 627–640. https://doi.org/10.1007/s41324-

-00318-2

Kim, D., & Park, H. (2021). Subsurface stress constraints in deep rock environments. Underground

Space, 6(4), 293–308. https://doi.org/10.1016/j.undsp.2020.08.003

Herrero, C., & Mateo, M. (2023). The contribution of urban geology to the development of

sustainable cities. Science of The Total Environment, 879, 162908. https://doi.org/10.1016/j.

scitotenv.2023.162908

Liu, L., Zhang, Y., Chen, Y., et al. (2021). Urban subsidence monitoring by SBAS-InSAR technique

in the Beijing Plain. Remote Sensing, 13(12), 2342. https://doi.org/10.3390/rs13122342

Zhang, Q., Zhao, Y., & Li, Y. (2025). Urban resilience for urban sustainability: Concepts and

evaluation. Sustainable Cities and Society, 85, 104179. https://doi.org/10.1016/j.scs.2023.104179

Kazo, J. (2021). Risk assessment of long-distance water infrastructure. Journal of Infrastructure

Systems, 27(3), 05021003. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000625

Zhang, Y., Liu, Q., Wang, X., & Chen, H. (2025). Deep learning-based risk modeling for urban

geological stability: A case study of Xuzhou. Computers, Environment and Urban Systems, 95,

https://doi.org/10.1016/j.compenvurbsys.2023.101845

Downloads

Published

2025-04-07
Loading...