DAVLAT BUDJETI DAROMADLARINI O‘RTA MUDDATLI ISTIQBOLDA REJALASHTIRISH VA PROGNOZLASHTIRISH O‘ZIGA XOS XUSUSIYATLARI
DOI:
https://doi.org/10.5281/zenodo.17951082Keywords:
davlat budjeti daromadlari, o‘rta muddatli fiskal prognozlash, Ridge regressiyasi, Lasso regressiyasi, Elastic Net, YAIM, mulk solig‘i, daromad solig‘i, MTEF, fiskal barqarorlikAbstract
Ushbu maqolada O‘zbekiston Respublikasida davlat budjeti daromadlarini o‘rta muddatli istiqbolda
rejalashtirish va prognozlashtirishning ilmiy-metodologik asoslari ishlab chiqilgan. Tadqiqot 2000–2023-yillar davri uchun
YAIM, uning tarkibiy tarmoqlari (qishloq xo‘jaligi, sanoat, qurilish, savdo va xizmat ko‘rsatish) va konsolidatsiyalashgan
budjetdagi asosiy soliq turlari (QQS, aksiz solig‘i, mulk solig‘i, daromad solig‘i) bo‘yicha real qiymatlardagi ma’lumotlarga
tayanadi. An’anaviy OLS modeli natijalari Ridge, Lasso va Elastic Net kabi regulyarizatsiyalang‘an regressiya modellari
bilan taqqoslanib, o‘rta muddatli fiskal prognozlarning aniqligi va barqarorligini oshirish imkoniyatlari baholangan.
Empirik natijalar mulk va daromad soliqlari YAIM hamda tarmoqlararo o‘sishning eng kuchli drayverlari ekanini, mulk
solig‘i koeffitsiyentlari esa ayniqsa sanoat va qurilish tarmoqlarida yuqori ekanini ko‘rsatadi. 2024–2026-yillar uchun
makroiqtisodiy ko‘rsatkichlar va konsolidatsiyalashgan budjet daromadlari bo‘yicha ishlab chiqilgan prognozlar Ridge/
Lasso modellari natijalari bilan uyg‘unlikda bo‘lib, resurslar «chegarasi»ni (resource envelope) aniq belgilash va MTEF
doirasida fiskal barqarorlikni mustahkamlashga xizmat qiladi. Maqolada yuridik shaxslar ko‘chmas mulki uchun eng kam
kadastr me’yorlarini joriy etish, soliq ma’murchiligini raqamlashtirish va hududlar kesimida soliq bazasini diversifikatsiya
qilishga doir amaliy takliflar ilgari surilgan
References
O‘zbekiston Respublikasining 2023-yil 25-dekabrdagi “2024-yil uchun O‘zbekiston Respublikasining davlat budjeti
to‘g‘risida” O‘RQ-886-sonli Qonuni
Auerbach, A. J. (1994). The U.S. fiscal problem: Where we are, how we got here, and where we’re going. NBER
Working Paper No. 4709. https://www.nber.org/papers/w4709
De Renzio, P. (2009). Taking stock: What do PEFA assessments tell us about PFM systems across countries? ODI
Working Paper. https://odi.org/en/publications/taking-stock-what-do-pefa-assessments-tell-us-about-pfm-systemsacross-
countries/
Leal, T., Pérez, J. J., Tujula, M., & Vidal, J. P. (2008). Fiscal forecasting: Lessons from the literature and challenges.
OECD Journal on Budgeting, 8(1), 1–29.
Jonung, L., & Larch, M. (2006). Improving fiscal policy in the EU: The case for independent forecasts. Economic
Policy, 21(47), 491–534.
World Bank. (1998). Public Expenditure Management Handbook. Washington, DC: World Bank.
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics,
(1), 55–67.
Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1), 267–288.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 67(2), 301–320.
Hill, R. C., Griffiths, W. E., & Lim, G. C. (2024). Explaining Ridge Regression and LASSO. In Principles of Econometrics
(Chapter 4). University of Arizona.
Li, Y., & Li, X. (2021). Lasso and ridge regression methods and their application in GDP forecasting. Proceedings of
SPIE, 12163, 1216337. https://doi.org/10.1117/12.2628045
Belloni, A., Chernozhukov, V., & Hansen, C. (2017). Lasso regressions and forecasting models in applied stress
testing. IMF Working Paper WP/17/108.
GeeksforGeeks. (2024). Ridge regression vs. Lasso regression. https://www.geeksforgeeks.org/machine-learning/
ridge-regression-vs-lasso-regression/
Department of Treasury and Finance Victoria. (n.d.). An overview of forecasting algorithms (including Lasso and Ridge
in tax revenue forecasting). https://www.dtf.vic.gov.au/victorias-economic-bulletin-applying-machine-learning-taxrevenue-
forecasting/3-overview-forecasting-algorithms
Mondal, S. (2024). A tutorial on Ridge and Lasso regression. LinkedIn. https://www.linkedin.com/pulse/tutorial-ridgelasso-
regression-subhajit-mondal
Scitepress. (2025). Using Linear Regression, Ridge Regression, Lasso Regression and Elastic Net in Predicting
Economic Indicators. In Proceedings of the 13th International Conference on Data Science, Technology and
Applications.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 MUHANDISLIK VA IQTISODIYOT

This work is licensed under a Creative Commons Attribution 4.0 International License.