TADQIQOT DIZAYNINI ISHLAB CHIQISH JARAYONIDA GIPOTEZALARNI SHAKLLANTIRISH, O‘ZGARUVCHILAR TIZIMINI TANLASH VA EKONOMET RIK IDENTIFIKATSIYA STRATEGIYASINI ASOSLASH
DOI:
https://doi.org/10.5281/zenodo.18438737Keywords:
tadqiqot dizayni; gipoteza; o‘zgaruvchilar tizimi; operatsionallashtirish; identifikatsiya; endogenlik; kausal inferensiya; instrumental o‘zgaruvchilar; DiD; RD; panel ma’lumotlarAbstract
Ushbu maqolada tadqiqot dizaynini ishlab chiqish jarayonida gipotezalarni shakllantirish, o‘zgaruvchilar
tizimini tanlash hamda ekonometrik identifikatsiya strategiyasini asoslash masalalari metodologik jihatdan yoritiladi.
Tadqiqot jarayoni “muammo–nazariya–gipoteza–o‘lchash–identifikatsiya–baholash–tekshiruv” zanjiri sifatida talqin
qilinib, har bir bosqichda yuzaga keladigan asosiy xatoliklar — o‘lchash xatosi, tanlanma seleksiyasi, endogenlik,
o‘tkazib yuborilgan o‘zgaruvchilar xatosi (omitted variable bias), teskari sababiylik va boshqa tahdidlar — hamda ularni
kamaytirish yo‘llari tizimlashtiriladi. Maqolada gipotezalarni testlanadigan va falsifikatsiya qilinadigan shaklga keltirish,
sababiy (kausal) savolni aniqlashtirish, konseptual model asosida o‘zgaruvchilarni operatsionallashtirish, indikatorlar va
proksi o‘zgaruvchilarni tanlash mezonlari muhokama qilinadi. Identifikatsiya strategiyalari sifatida randomizatsiya, tabiiy
tajribalar, instrumental o‘zgaruvchilar, farqlar farqi (DiD), regressiya diskontinuiteti (RD), panel ma’lumotlar va fiksirlangan
effektlar, moslashtirish (matching) hamda sintetik nazorat yondashuvlarining asosiy taxminlari va diagnostik testlari
yoritiladi. “Natijalar” bo‘limida ta’lim dasturi samaradorligini baholash misolida gipotezalar, o‘zgaruvchilar matritsasi,
identifikatsiya strategiyasini tanlash mantiqi hamda jadval va sxematik tasvirlar keltiriladi. Xulosa qismida tadqiqot
dizaynining sifat ko‘rsatkichlari, ishonchlilik va takrorlanish (replicability) talablarini ta’minlash bo‘yicha amaliy tavsiyalar
beriladi.
References
Abadie, Alberto. 2005. “Semiparametric Difference-in-Differences Estimators.” Review of Economic Studies, 72(1):
–19.
Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2010. “Synthetic Control Methods for Comparative Case
Studies.” Journal of the American Statistical Association, 105(490): 493–505.
Angrist, Joshua D., and Jörn-Steffen Pischke. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion.
Princeton, NJ: Princeton University Press.
Cameron, A. Colin, and Pravin K. Trivedi. 2005. Microeconometrics: Methods and Applications. Cambridge: Cambridge
University Press.
Duflo, Esther, Rachel Glennerster, and Michael Kremer. 2007. “Using Randomization in Development Economics
Research: A Toolkit.” In Handbook of Development Economics, vol. 4, 3895–3962. Amsterdam: Elsevier.
Greene, William H. 2012. Econometric Analysis. 7th ed. Boston: Pearson.
Gujarati, Damodar N., and Dawn C. Porter. 2009. Basic Econometrics. 5th ed. New York: McGraw-Hill.
Imbens, Guido W., and Donald B. Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences.
Cambridge: Cambridge University Press.
Imbens, Guido W., and Thomas Lemieux. 2008. “Regression Discontinuity Designs: A Guide to Practice.” Journal of
Econometrics, 142(2): 615–635.
Pearl, Judea. 2009. Causality: Models, Reasoning, and Inference. 2nd ed. Cambridge: Cambridge University Press.
Popper, Karl. 2002. The Logic of Scientific Discovery. London: Routledge.
Rosenbaum, Paul R., and Donald B. Rubin. 1983. “The Central Role of the Propensity Score in Observational Studies
for Causal Effects.” Biometrika, 70(1): 41–55.
Stock, James H., and Mark W. Watson. 2015. Introduction to Econometrics. 3rd ed. Boston: Pearson.
Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT
Press.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 MUHANDISLIK VA IQTISODIYOT

This work is licensed under a Creative Commons Attribution 4.0 International License.