Qayta tiklanadigan vodorod narxlari strategiyasini o’rganish: xarajat noaniqliklarini bartaraf etish

Qayta tiklanadigan vodorod narxlari strategiyasini o’rganish: xarajat noaniqliklarini bartaraf etish

Authors

  • Komila Nuraliyeva

DOI:

https://doi.org/10.5281/zenodo.15510079

Keywords:

yashil vodorod, qayta tiklanadigan energiya, narxlash strategiyasi, xarajat noaniqligi, Monte Karlo simulyatsiyasi, dinamik narxlash, shartnoma asosidagi narx [offtake], CAPEX va OPEX, bozor mexanizmlari, regulyator tavsiyalari

Abstract

Ushbu maqolada qayta tiklanadigan energiya asosida ishlab chiqarilgan yashil vodorod narxlash
strategiyalari tahlil qilinadi. Avvalo, yashil vodorod ishlab chiqarishdagi CAPEX va OPEX kabi asosiy xarajat
komponentlari ko‘rib chiqilib, ularning noaniqlik manbalari aniqlanadi. Keyin stoxastik model va Monte Karlo
simulyatsiyalari yordamida xarajat hamda bozor parametrlarining tarqalishi baholanadi. Tadqiqotda uch xil
narxlash yondashuvi solishtiriladi: statik (bir martalik) narx belgilash, dinamik (bozor sharoitiga moslashuvchi)
narx va uzoq muddatli offtake shartnomalari asosidagi narx. Har bir strategiyaning ichki daromadlilik darajasi
– IRR, risk o‘lchovlari – VaR 95 % va sof foyda ko‘rsatkichlari taqdim etiladi. Natijalar dinamik narxlashning
eng yuqori rentabellik va barqarorlikni ta’minlashini ko‘rsatadi, shartnoma yondashuvi esa uzoq muddatli
xavfsizlikni oshiradi. Maqola yakunida regulyatorlar va sanoat ishtirokchilari uchun soliqlar, subsidiyalar
hamda real vaqt monitoring platformalari bo‘yicha aniq tavsiyalar berilgan.

Author Biography

Komila Nuraliyeva


International School of Finance Technology and Science
instituti Menejment kafedrasi o‘qtuvchisi

References

International Energy Agency (IEA). (2021). The Future of Hydrogen: Seizing today’s opportunities.

Paris: IEA. https://www.iea.org/reports/the-future-of-hydrogen

Hydrogen Council. (2020). Path to Hydrogen Competitiveness: A cost perspective. https://

hydrogencouncil.com/en/path-to-hydrogen-competitiveness-a-cost-perspective

IRENA (International Renewable Energy Agency). (2022). Green Hydrogen Cost Reduction:

Scaling up Electrolysers to meet the 1.5°C climate goal. Abu Dhabi. https://www.irena.org

BloombergNEF. (2023). Hydrogen Market Outlook. Retrieved from https://about.bnef.com

Züttel, A. (2004). Materials for hydrogen storage. Materials Today, 6(9), 24–33. doi:10.1016/

S1369-7021(04)00431-6

Glenk, G., & Reichelstein, S. (2019). Economics of converting renewable power to hydrogen.

Nature Energy, 4, 216–222. doi:10.1038/s41560-019-0326-1

Ball, M., & Weeda, M. (2015). The hydrogen economy – Vision or reality? International Journal of

Hydrogen Energy, 40(25), 7903–7919. doi: 10.1016/j.ijhydene.2015.04.032

Zhang, X., Bauer, C., Mutel, C.L., & Volkart, K. (2017). Life Cycle Assessment of Power-to-Gas:

Approaches, system variations and their environmental implications. Applied Energy, 190, 326–

doi: 10.1016/j.apenergy.2016.12.098

Hepburn, C., O’Callaghan, B., Stern, N., Stiglitz, J., & Zenghelis, D. (2020). Will COVID-19 fiscal

recovery packages accelerate or retard progress on climate change? Oxford Review of Economic

Policy, 36(Supplement_1), S359–S381.

IEA. (2023). Global Hydrogen Review 2023. Paris: International Energy Agency.

Downloads

Published

2025-05-01
Loading...